Combined sources of intrinsic parameter fluctuations in sub-25 nm generation UTB-SOI MOSFETs: A statistical simulation study
نویسندگان
چکیده
The ultra thin body (UTB) SOI architecture offers a promising option to extend MOSFET scaling. However, intrinsic parameter fluctuations still remain one of the major challenges for the ultimate scaling and integration of UTB-SOI MOSFETs. In this paper, using 3D statistical numerical simulations, we investigate the impact of random discrete dopants, body thickness variations and line edge roughness on the magnitude of intrinsic parameter fluctuations in UTB-SOI MOSFETs. The sources of intrinsic parameter fluctuations, which can be separated in simulation, will occur simultaneously within a single MOSFET. To understand the impact of these sources of fluctuation in an actual device, simulations with all sources of intrinsic parameter fluctuations acting in combination have also been performed. 2007 Published by Elsevier Ltd.
منابع مشابه
Intrinsic Parameter Fluctuations in Sub-10 nm generation UTB SOI MOSFETs
Ultra Thin Body (UTB) SOI are promising alternatives for extending the MOSFET scaling. However, intrinsic parameter fluctuations still remains as one of the major challenges for the ultimate scaling and integration of UTB SOI MOSFETs. In this paper, using 3D statistical numerical simulations we investigate the impact of random discrete dopants, body thickness variations and line edge roughness ...
متن کاملIntegrating intrinsic parameter fluctuation description into BSIMSOI to forecast sub-15 nm UTB SOI based 6T SRAM operation
Novel device architectures such as ultra-thin body silicon-on-insulator (UTB SOI) MOSFETs which are more resistant to some of the sources of intrinsic parameter fluctuations are expected to play an increasingly important role beyond the 45 nm technology node. Apart from reduced device variability UTB SOI SRAM would benefit considerably from the superior electrostatic integrity and reduced junct...
متن کاملSub-25 nm UTB SOI SRAM cell under the influence of discrete random dopants
Intrinsic parameter fluctuations steadily increase with CMOS technology scaling. Around the 65 nm technology node, such fluctuations will eliminate much of the available noise margin in SRAM based on conventional MOSFETs. Device mismatch due to intrinsic parameter fluctuation causes each memory cell of the millions in a typical memory array to have different stability and performance. Ultra Thi...
متن کاملImpact of Body Thickness Fluctuation in Nanometre Scale UTB SOI MOSFETs on SRAM Cell Functionality
Ultra Thin Body (UTB) SOI MOSFETs are increasingly competitive for nanometre scale VLSI applications due to superior electrostatic integrity compared to conventional MOSFETs. The possibility to use undoped channels in such devices also dramatically reduces the random dopant induced parameter fluctuations. To fully realise performance benefits of UTB SOI based circuits a statistical circuit simu...
متن کاملIntrinsic parameter fluctuations in conventional MOSFETs until the end of the ITRS: A statistical simulation study
Variability in device characteristics will affect the scaling and integration of next generation nano-CMOS transistors. Intrinsic parameter fluctuations introduced by random discrete dopants, line edge roughness and oxide thickness fluctuations are among the most important sources of variability. In this paper the variability introduced by the above sources is studied in a set of well scaled MO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007